In Situ Resources Utilization Capability Roadmap

Time	Name	Affiliation	Paper
	9:30 J. Sanders	NASA JSC	ISRU NASA Overview
	10:00 F. Bauer	NASA HQ	APIO Public Input Process
	10:15 Crabb	Orbital Technologies Corp.	Basalt Fiber-a base ISRU raw material for structures, therm
	10:30 Schubert	Space Manufacture, LLC	Architecture for a Self-Sustaining Lunar Base Providing Spa
	10:45 Lindsey	Futron Corp.	In-Situ Resource Utilization: Lunar Regolith Shielding for Lu
	11:00 Shea	Lunar Development	Landing pads, Life Support Volatiles and Rocket Fuel from N
	11:15 Morris	Swales	Planetary Thermal Architecture
	11:30 Morrow	Orbital Technologies Corp.	Methods to Generate and Utilize In Situ Inedible Biomass
	Schissler	Penn State University	Intelligent Excavation Using Multi-Drilbots to Search, Disce
	11:45 Lunch Break		
	13:00 Joshi	Physical Sciences Inc	Multi-use Solar Energy System for Lunar ISRU and Biomass
	13:15 Jones	XCOR Aerospace	Throttling Liquid Rocket Engine with Fully Lunar-Derivable I
	13:30 Dissly	Ball Aerospace	The Need for Lunar Robotic In-Situ Resource Prospecting
	13:45 Reedman	MD Robotics	In Space Refueling and Resupply
	14:00 Paik	JPL/Univ of Maryland	Exploring the Moon using an Orbiting Superconducting Grac
	14:15 Cardiff	NASA GSFC/ USAF	Production of Oxygen on the Moon by Vacuum Pyrolysis
	14:30 Shappirio	NASA GSFC	Rapid determination of In Situ Resources
	14:45 Moseley	NASA GSFC	Far Infrared Detectors for Exploration and Resource Identif
	15:00 Gilland	Ohio Aerospace Institute	In Situ Resources for Advanced Propulsion Concepts
	15:15 Trombka	NASAGSFC	Design of a Pulsed Neutron Gamma-Ray Spectrometer for N
	16:00		

nal insulation, micrometeoroid protection and other In-Situ Cord/Cable, Fabric and Composite Solid Products ice Solar Power to Earth unar Station Protection Vining
rn, Extract, and Convey Planetary Minerals from Underground to Surface Locations
s Production Propellant
diometer
icaton
Mars Rover Missions